单相电机控制器工作原理单相电机控制器控制器的工作原理都是基于某一些电源开关的开关操作顺序,即晶闸管。晶闸管的接通方式使得负载在输入电压的每个半周期的一部分内连接到交流电源。因此,输出电压跟随负载连接到电源的输入交流电压部分。这样,输出电压得到控制。
当单相电机控制器的定子由单相电源供电时,它会在定子绕组中产生交变磁通。 根据法拉第电磁感应定律,流过定子绕组的交流电会在(鼠笼式转子的)转子条中产生感应电流 。转子中的这种感应电流也会产生交变磁通。
即使在设置了控制器两个交变磁通后,电机仍无法启动。但是,如果转子在任一方向收到外部作用力的初始启动,则电机会加速到其速度并保持其额定速度运行。单相电机的这种行为能用双场旋转理论来解释。
单相感应电机的类型单相感应电机大范围的使用在只有单相电源可用的应用。而这些设备在几千瓦范围内制造,以满足各种应用的要求,例如吊扇、食品搅拌机、冰箱、真空吸尘器、便携式电钻、吹风机等。下文将简要讨论很多类型的单相感应电机。根据启动方式,单相异步电动机基本类型分别为:分相电机、电容启动电机、永磁电容运转电机等几种类型。
分相感应电机是使用较广泛的单相感应电机类型之一。分相电机的主要部件包括主绕组、辅助绕组和离心开关。其是通过在同一个定子铁芯上提供两个绕组来建立旋转磁场的简单的布置。辅助绕组或启动绕组带有一个串联电阻,因此它的阻抗本质上变成了高电阻。它的缠绕方式与主绕组不同,但与主绕组相比,其匝数更少,直径小得多。
电容启动感应电机与分相电机类似,但在辅助绕组上串联了一个电容器。这是分相电机的改进版本。由于电容器吸收超前电流,因此使用电容器会增加两个电流(主电流和辅助电流)之间的相位角,从而增加启动扭矩。这是在单相感应电机中使用电容器的主要原因。
交流同步发电机的工作过程可以简单看作为取消直流发电机中的换向器装置后的工作过程,即在发电机转子绕组旋转过程中无换向过程,电流输出方向发生明显的变化的过程。
另外,在交流同步发电机中,并不是由转子绕组做切割磁感线运动,而是由转子产生旋转的磁场(励磁装置为励磁绕组通入电流),使定子绕组做切割磁感线的运动,由此产生感应电动势,并通过接线所示为交流发电机的工作过程示意图。
交流同步发电机根据定子绕组输出相数,可以设计成产生单相或多相交流电压的发电机。图7为产生单相、两相和三相交流电压的基本设置。
图8所示为单相交流发电机工作原理示意图。磁铁旋转后,在两个定子绕组A、B中产生正弦波交流电动势e。将产生电动势的电源称为相,这种发电机使用由单相和两根电线供给的交流,称为单相交流,这种配电方式称为单相二线制。
在该类发电机中,定子槽内放置着3个结构相同的定子绕组AX、BY、CZ,其中A、B、C称为绕组的始端,X、Y、Z称为绕组的末端,这些绕组在空间互隔120°。转子磁场在空间按正弦规律分布,当转子由原动机带动以角速度ω等速顺时针方向旋转时,在3个定子绕组中就产生频率相同、幅值相等、相位上互差120°的3个正弦电动势,这样就形成了对称三相电动势。关键字:引用地址:单相交流电机工作原理图
20世纪50年代,人类开始有了最早的开关电源;80年代,计算机电源全面实现了开关电源化;90年代后,开关电源相继开始大面积进入了各种电子、电器设备领域 。随后在雷达领域也开始了十分普遍的应用。 随着现代雷达技术的发展,对电源的需求越来越多样化,特殊化。另外,由于雷达的工作特性决定了其发射电源的负载特性为脉冲式负载,且不同的雷达由于其发射频段不一样,所以电源的负载脉冲频率也是多种多样的。同时为了控制顶降不能过大,电源的输出端往往都要接上很大容量的储能电容。我们设计开发的这款开关电源主要使用在于雷达的发射机,为雷达波的发射提供供电。 1 主要技术指标 该电源输入为380V三相四线V)可调,输出电流
用特种开关电源研制 /
想要提高 LED电源 的测试效率,最快捷简便的方法就是选择恰当的电子负载。如果对电子负载的知识不够熟悉,或者熟练度不够没办法掌握的话,甚至会造成测试结果的置信度下滑,进而影响到产品的质量,严重的还会引发事故。本篇文章主要介绍电子负载CV的原理,并对 LED 电源测试的一些误区进行介绍。 电子负载的CV模式带载,是LED电源测试的基础。CV,便是恒定电压,但负载只是电流拉载的设备,自身不能提供恒定电压,因此,所谓的CV,仅仅是通过电压负反馈电路,来伺服LED电源输出电流的变化,使LED输出电容上的电荷平衡,进而达到恒定电压的目的。因此,决定CV精度的核心因素有2个: 负载带宽 LED电源输出电容的大小
电机的空载电流是指在没有负载或负载非常轻微的情况下,电机运行所需要的电流。空载电流的大小与电机的特性及外部电路条件有关。 首先,空载电流的大小与电机的类型有关。不一样的电机具有不一样的空载电流特性。常见的电机类型包括直流电机、异步电机和同步电机。直流电机是最简单的电机类型之一,其空载电流通常较小。异步电机是最常见的工业电机,其空载电流相对较大。同步电机是另一种常见的电机类型,其空载电流较小,但需要外部提供无功功率才能正常运行。 其次,空载电流的大小还与电机的功率和转速有关。一般来说,功率越大的电机其空载电流越大。这是因为功率越大,电机的线圈匝数和磁路参数越大,对磁通和电流的需求也越大。另外,转速也会对空载电流产生一定的影响。在空载状态下
全球功率半导体和管理方案领导厂商 – 国际整流器公司 (International Rectifier,简称IR) 今天宣布推出IR3847大电流负载点 (POL) 稳压器,该产品可将采用纤巧的5x6 mm封装的IR第三代SupIRBuck® 系列的额定电流扩大至25A。 由于IR3847使用的新款热增强型封装采用铜夹技术和多项自主创新的控制器技术,所以该器件不需要散热片即可在25A下工作,其电路板尺寸也比其它集成式解决方案减少了20%,比采用控制器和功率MOSFET的分立式解决方案减少了70%,使一套完整的25A电源解决方案可以在168mm2 大小的电路板中实现。 新器件集成了IR最新一代功率MOSFET,拥有功
点稳压器IR3847 /
广告摘要声明广告 撰文 歌者 一般而言,SCARA给人的主要印象都是负载小、速度快,90年代前后,Adept推出了全球第一台桌面型SCARA——Cobra,速度达到当时之最,Cobra有个经典的吸弹珠的DEMO,视频出来的时候所有人都以为视频是快进了,就是放在今天,能挑战这个DEMO的人也不是很多。 后来,Staubli推出的TP80速度再上一个新台阶,一分钟可以抓取200次以上。 高速、占地小等特点,使得SCARA很适合3C产业中的生产制造,据公开多个方面数据显示,目前SCARA在3C领域的应用占比超60%,这也导致市场上3-6KG负载的SCARA是主流,其竞争程度也是相当激烈。 实际上,对于SCARA来说,速度和负载就是一个矛盾体
Maxim Integrated的ZON M3单相电表SoC在5000:1动态范围下精度高达±0.1%。 中国,北京,2014年4月15日。Maxim Integrated Products, Inc. (NASDAQ: MXIM)推出ZON™ M3 (MAX71315)单相电表SoC,为设计人员提供高精度、低成本电表和固态表设计的具体方案。 优异的表计计量性能对于实现精确监测和计费至关重要。此外,随着全世界内电表布设数量突破百万,设计成本也成为电表厂商的主要考虑因素。ZON M3电表方案集成了4路24位ADC,用于4通道数据采集,5000:1动态范围下测量精度高达±0.1%;32位计算引擎(CE)对采集数据进行高
表计SoC /
在《 怎么样处理高di/dt负载瞬态(上) 》中,我们讨论了电流快速变化时一些负载的电容旁路要求。我们得知必须让低等效串联电感(ESL)电容器靠近负载,因为不到0.5 nH便可产生不可接受的电压剧增。实际上,要达到这种低电感,要求在处理器封装中放置多个旁路电容器和多个互连针脚。本文中,我们将讨论达到电源输出实际di/dt要求所需的旁路电容大小。 为了讨论方便,图1显示了电源系统的P-SPICE模型。本图由补偿电路电源、调制器(G1)和输出电容器组成。内部还包括互连电感、旁路电容负载模型、DC负载和步进负载。 图 1 简易 P-SPICE 模型辅助系统设计 首先,你需要决定是将电源和负载看作一个个单独的
瞬态(下) /
最近在帮助一个客户设置WAF (Web Application Firewall),WAF厂商要求在负载均衡器上,设置多个公网IP地址。架构如下图: 我研究了一下,在Azure ARM模式下能轻松实现,在这里记录一下。 在默认情况下,Azure负载均衡器可以有5个公网IP地址。 如果我们想在负载均衡器上,设置超过5个公网IP地址,我们大家可以联系微软支持(若使用国内Azure,请联系世纪互联) 1.首先我们登录Azure ARM Portal
均衡器上设置多个公网IP地址 /
范围高效率升压型DC-DC转换器设计技术研究_李梦丽
逆变电源传导发射的抑制技术_孙莉
功率控制管理系统设计_罗志恒
东芝1200V SIC SBD “TRSxxx120Hx系列” 助力工业电源设备高效
2024 瑞萨电子MCU/MPU工业技术研讨会——深圳、上海站, 火热报名中
Follow me第二季第4期来啦!与得捷一起解锁蓝牙/Wi-Fi板【Arduino Nano RP2040 Connect】超能力!
嵌入式工程师AI挑战营(进阶):基于RV1106部署InsightFace算法,实现多人的实时人脸识别
瑞萨推出包括先进可编程14位SAR ADC在内的 全新AnalogPAK可编程混合信号IC系列
全新产品几乎适用于任何应用,大幅度减少元件数量、BOM成本和占板空间2024 年 11 月 12 日,中国北京讯 - 全球半导体解决方案供应商瑞 ...
交通电气化建立在创新发展的基础上,不仅在电池技术和快速充电器方面,而且在车载充电器 (OBC) 方面,这些充电器 (OBC) 支持通过更 ...
快速增长的电动汽车 (EV) 销售正在推动充电基础设施的增长,预计到 40 年,所有功率水平的年价值将达到 2030 亿美元。这将为电动汽 ...
电动汽车市场是碳化硅(SiC)设备制造商最大和增长最快的商机之一。根据国际能源署 (IEA) 的数据,2020 年全球道路上有 1 万辆电动 ...
电动汽车(EV)和混合动力电动汽车(HEV)正在迅速超越汽车市场,随着这些新车的出现,对车载和非车载充电系统的需求也在增加。然而,这些 ...
嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科